S

Assessing multiple sources of cadmium exposure in an Italian population

Filippini Tommaso¹, Cherubini Andrea², Maffeis Giuseppe², Malagoli Carlotta¹, Malavolti Marcella¹, Sieri Sabina³, Krogh Vittorio³, Vescovi Luciano⁴, Modenesi Marina⁴, Castiglia Paolo⁵, Michalke Bernhard⁶

Objectives

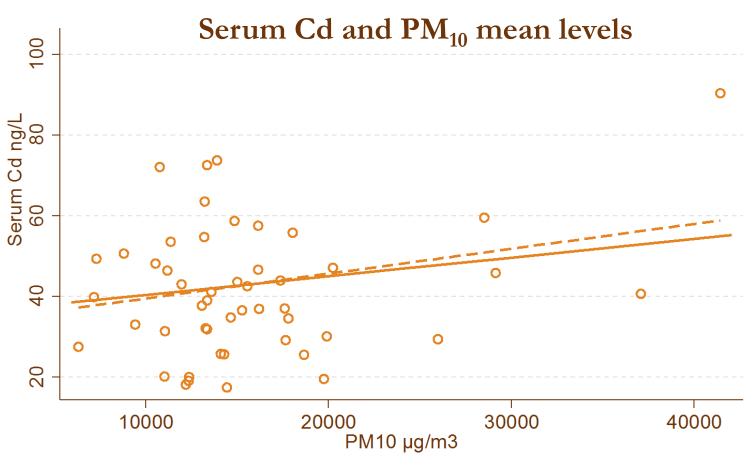
Cadmium (Cd) is a heavy metal representing a serious ferrous metal industrial production and fossil fuel environmental hazard to the human. Even though food combustion, followed by ferrous metal and cement and cigarette smoking are usually by far the main sources production, and waste incineration. The aim of our study of exposure, outdoor air pollution could be an additional was to assess the influence of outdoor air pollution on a important source to be taken into account. Main biomarker of cadmium exposure. anthropogenic sources of outdoor air cadmium are non-

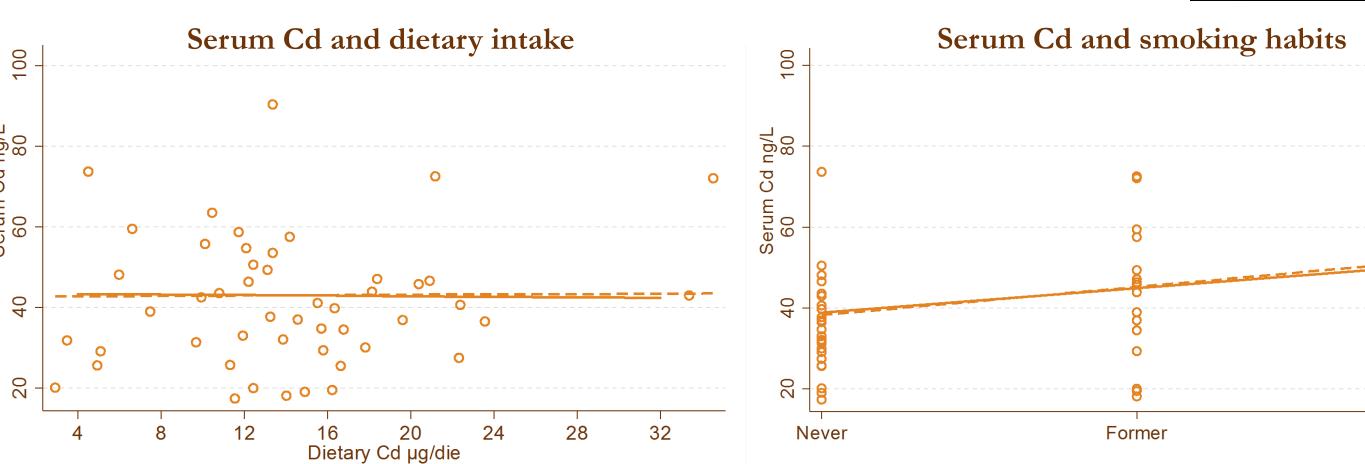
Methods

Outdoor exposure to particulate matter $\leq 10 \, \mu m$ (PM₁₀) with the serum Cd, measured with inductively coupled environmental air Cd level. We compared these estimate and dietary Cd intake on serum Cd.

from motorized traffic was assessed for fifty subjects plasma – sectorfield – mass spectrometry. Information on randomly selected from Modena municipality residents, smoking habits and cadmium dietary intake were collected

aged 35-70. We geocoded the residence of these subjects with a semi-quantitative food frequency questionnaire in and modeled the corresponding ambient air PM_{10} order to assess possible confounding factors. We used both concentration using the CAlifornia LINE Source crude and multivariate linear regression models to Dispersion Model version 4 (CALINE-4) as a proxy of determine the influence of outdoor PM₁₀ levels, smoking


Results


P=0.133), 0.026 (-0.827 - 0.829, P=0.952) and 6.962 (-0.022 - 13.289, P=0.099), respectively.

Median values (25th–75th) for serum and dietary Cd were -13.945, P=0.051) for PM₁₀, diet and smoking, respectively. 40.85 ng/l (30.05 - 53.50) and $13.36 \mu\text{g/die} (10.45 - 16.67)$. Corresponding adjusted values were 0.463 (-0.365 - 1.292), Crude β -coefficients were 0.617 (95% CI -0.194 – 1.428, P=0.266), -0.036 (-0.866 – 0.793, P=0.930) and 6.057 (-1.175)

Current

Figures and Table: linear regression analysis between serum cadmium (ng/L) and PM₁₀ (µg/m³), dietary intake (µg/die) and smoking habits (smoking categorized as 0=never smokers, 1=former smokers, 2=current smokers). Multivariate model included as adjusting variable each factor alternatively.

	Crude			Adjusted		
Sources of Cd	β	95% CI	P	β	95% CI	P
Outdoor PM ₁₀ levels	0.617	(-0.194 - 1.428)	0.133	0.463	(-0.365 - 1.292)	0.266
Dietary intake	0.026	(-0.827 - 0.879)	0.952	-0.036	(-0.866 - 0.793)	0.930
Smoking habits	6.962	(-0.022 - 13.945)	0.051	6.057	(-1.175 - 13.289)	0.099

In our population the most important factor influencing Cd serum content appears to be

cigarette smoking, followed by outdoor air pollution (measured by PM10 levels) and lastly diet,

possibly for the limitations of dietary assessment methodology. In addition, other unmeasured

factors could have influenced serum Cd content, such as a slow release from liver and kidney

Bibliography Vahter M, Berglund M, Nermell B, Akesson A. Bioavailability of cadmium from shellfish and mixed diet in women. Toxicol Appl Pharmacol. 1996;136:332-341. Nordberg M. Environmental exposure and preventive measures in Sweden and EU. Biometals. 2004;17:589-592.

Drufuca A, Battaiotto S, Bengo I, Rossi D, Torriani L. Variante Generale al Piano Territoriale di Coordinamento Provinciale.

Procedura di simulazione della mobilità delle persone. Milano: Provincia di Modena-Polinomia: 2007.

Jarup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201-208.

Modena Municipality Map with layers of interest for outdoor PM₁₀ exposure assessment: railway lines (black), highway (green), highroads (dark gray), urban roads (light gray), waste incinerator (red point) and study subjects (orange diamonds).

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Conclusions

due to long term exposure.

¹Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Reggio Emilia, Italy; ²Italy TerrAria srl, Milan, Italy; ³Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy; ⁴IREN, Reggio Emilia and Piacenza, Italy; ⁵Department of Biomedical Sciences, Hygiene and Preventive Medicine Unit, University of Sassari – AOU Sassari, Sassari, Italy; ⁶Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Munich, Germany.

