Environmental and behavioral risk factors for subfertility:

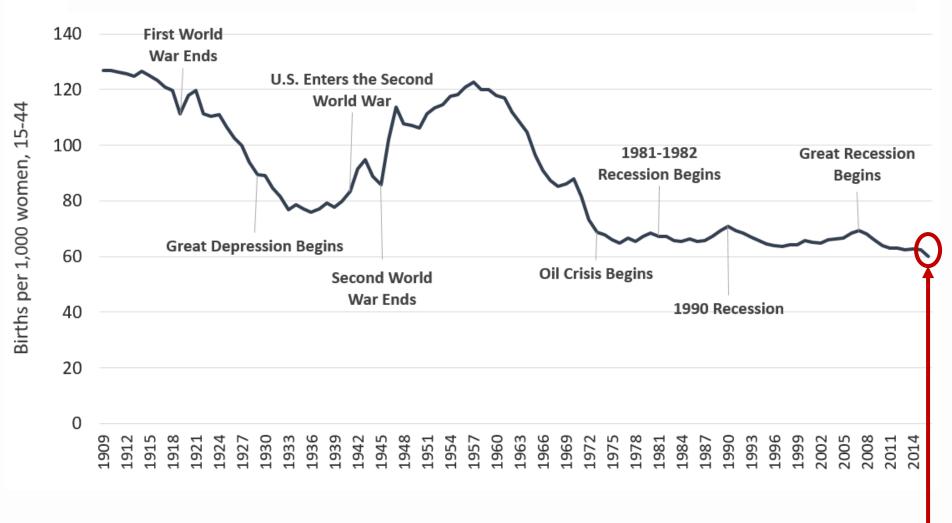
Findings from web-based preconception cohort studies

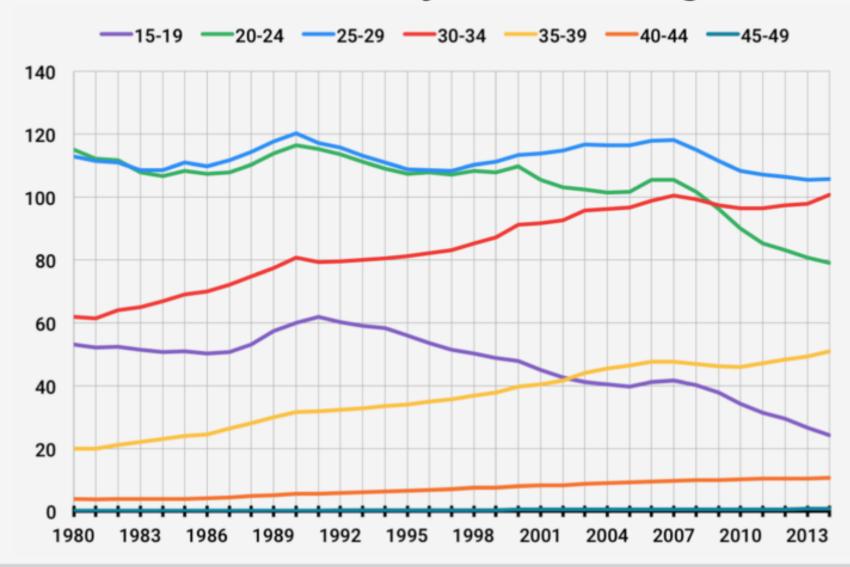
Lauren A. Wise, Sc.D.
Professor, Department of Epidemiology
Boston University School of Public Health
November 30, 2018

Overview

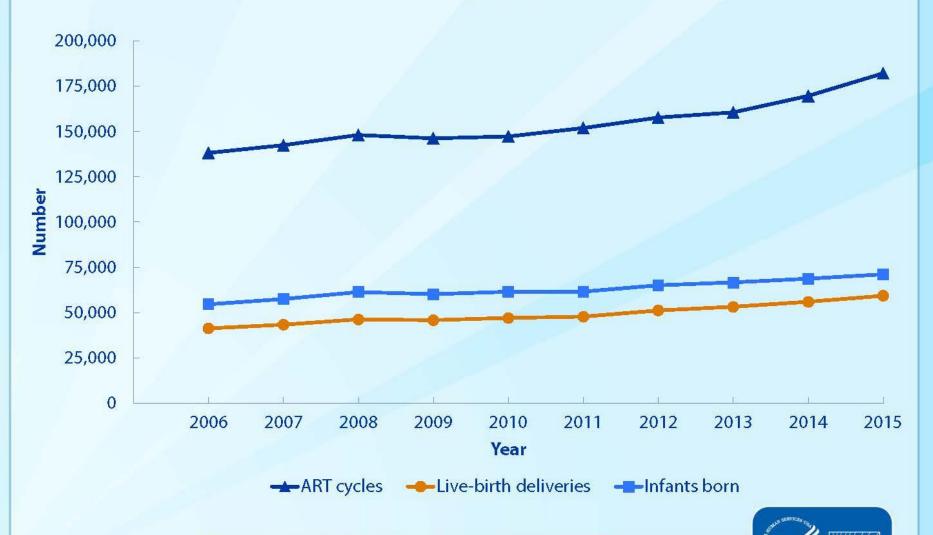
- Trends in Fertility
- Prospective time-to-pregnancy studies in Denmark
 - 1) Snart-Gravid: "Soon Pregnant" Study (2007-2011)
 - 2) Snart-Foraeldre: "Soon Parents" Study (8/2011-present)
- Prospective time-to-pregnancy study in North America
 - 3) *PRESTO*: Pregnancy Study Online (6/2013-present)
- Methodologic and substantive findings

Infertility


- About 10-15% of couples experience infertility
- Fertility rates are at an all-time low in United States
- Use of Assisted Reproductive Technology (ART) is increasing
- ART is associated with \$5 billion in annual health care costs, psychological and financial hardship among couples, and adverse pregnancy and birth outcomes



Fertility Rate: United States, 1909-2016



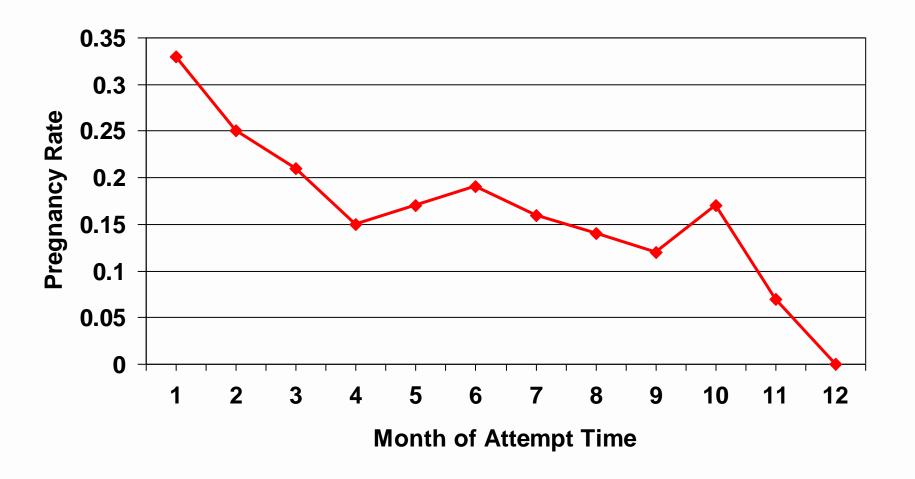
In 2016: fertility rate in US was the <u>lowest it has ever been</u> (60.2 births/1,000 women aged 15-44), down 1% from 2015.

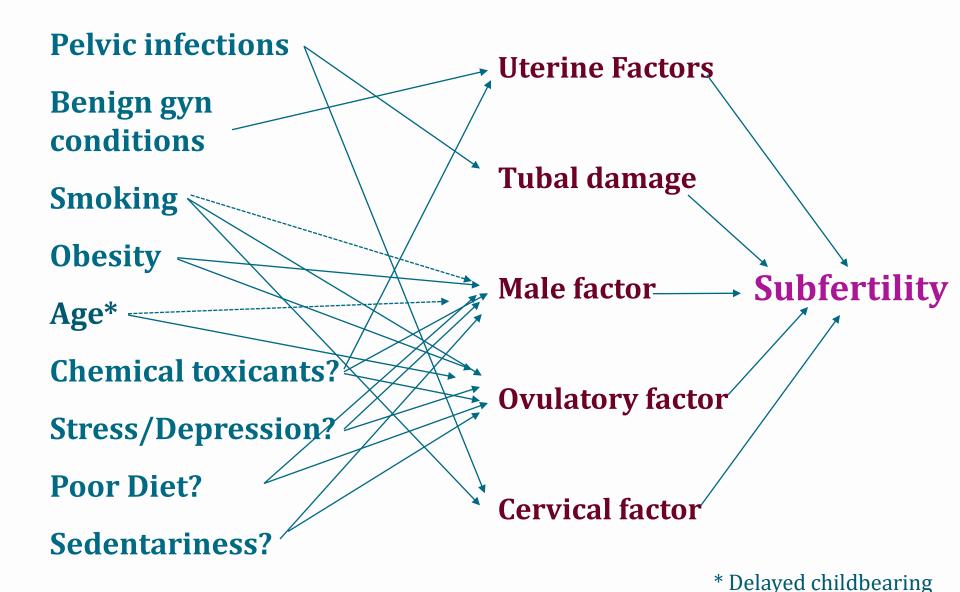
Birth rates by mother's age

Fertility Measures and Definitions

- Fecundity
 - Biologic capacity to reproduce, irrespective of pregnancy intention
- Fertility
 - Demonstrated fecundity
 - Term used most frequently by demographers, e.g. 'total fertility rate'
- Fecundability
 - Probability of conceiving in given time interval (e.g., menstrual cycle), with regular unprotected intercourse. Measure for study of fecundity.

Fecundability


- Probability: ranging from 0 to 100%
- Measured indirectly by number of menstrual cycles it takes to conceive, or time-to-pregnancy (TTP)
- TTP likely includes many cycles where conception occurs but there is early loss (e.g., before implantation)
- Integrated measure of all factors affecting fertility
- Function of biological processes in both male and female



Fecundability in a given population

Decline in fecundability seen in population over time. These data are from 611 women having IUDs removed in order to conceive. As the more fecund couples conceive and drop out of the pool of waiting couples, the sample is overrepresented by couples with lower fecundability. (Tietze et al. 1968)

Modifiable pathways to subfertility

Time-to-pregnancy study designs

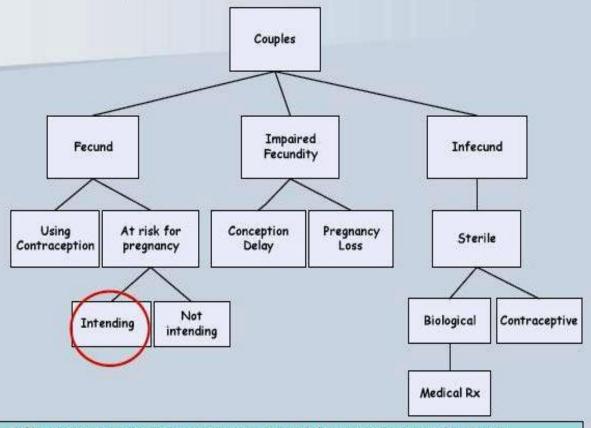
Retrospective

- Sampling unit: pregnancy or live birth
 - First, most recent, vs. all
- Women/couples asked to recall TTP/exposures

Prospective

- Sampling unit: pregnancy attempt
 - Women/couples discontinuing contraception
 - Women/couples actively trying to conceive

'Current duration approach'


 Among those trying to conceive, ascertain length of pregnancy attempt (Slama et al. 2006) If all women conceived, prospective and retrospective studies would generate equivalent data

Population Fecundity

1-2% of reproductive age women planning or at risk for pregnancy in next few months (Bonde et al., 1988; Buck et al., 2004; Slama et al., 2006)

Background: Snart-Gravid Study

- Prospective TTP study: Danish and U.S. Researchers
 - Aarhus University Hospital & Boston University School of Public Health
- Data collection
 - June 2007-August 2011 (follow-up ended in August 2012)
 - 6,033 women enrolled
- Main research questions:
 - Can internet be used for recruitment and follow-up in epidemiologic studies?
 - What are important lifestyle and behavioral determinants of TTP?

Advantages of using the Internet?

- Cost efficiency
- Easier data collection and follow-up
- Flexibility
- Once infrastructure is set up, can collect data at low cost indefinitely
- Access to "hidden" populations
 - Couples planning a pregnancy
 - Individuals with HIV/AIDS

Advantages of using the Internet?

- Some studies suggest equal or better data validity
 - Participants *may* be more truthful
 - Lower % missing data (pop-ups for missed questions)
 - Built-in data quality checks (validation rules)
 - Skip patterns → shorter survey → reduce "participant fatigue"
 - Can glean useful information from "break off"

Snart-Gravid: study design

Prospective cohort design

- Baseline questionnaire (randomized short vs. long)
- Follow-up questionnaire every 2 months for 12 months or until pregnancy occurs
- Early pregnancy questionnaire

Eligibility requirements

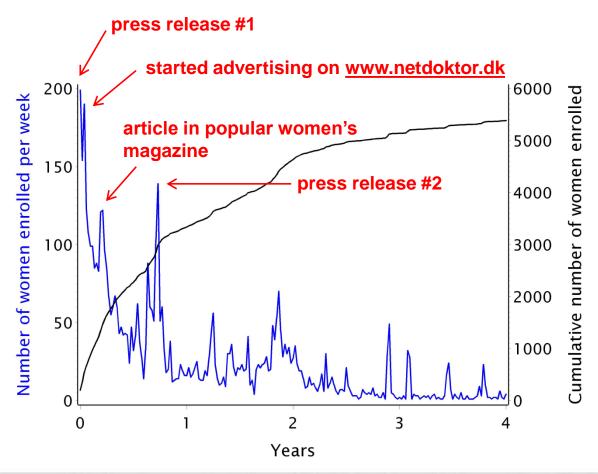
- Danish women age 18-40 years
- Attempting to conceive
- Not using fertility treatments
- Willing to provide CPR number

Baseline questionnaire

- Demographics
- Menstrual, contraceptive and reproductive history
- Frequency of intercourse
- Medical history
- BMI, waist & hip circumferences, physical activity
- Alcohol, caffeine, vitamins, medications
- Smoking (self, partner, in utero, passive)
- Perinatal factors: birth weight and gestational age
- Occupation

Follow-up & early pregnancy questionnaires

- Follow-up
 - Pregnant?
 - Changes in lifestyle factors
- Early pregnancy
 - Method of pregnancy confirmation
 - Due date
 - Weight gain
 - Nausea and vomiting
 - Change in lifestyle factors since conception


Recruitment

- Ad on www.netdoktor.dk
- Press releases resulting in:
 - Print articles: magazines, newspapers, on-line
 - TV and radio features
- Word of mouth
- Target enrollment: 2,500 women

Recruitment

Follow-up

• 18% lost to follow-up at some point during year

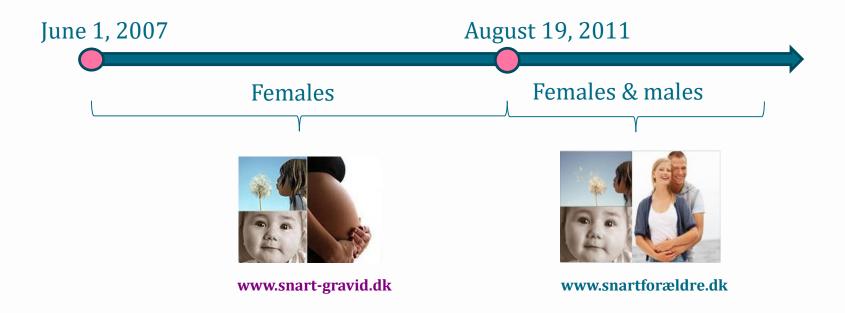
BUT....

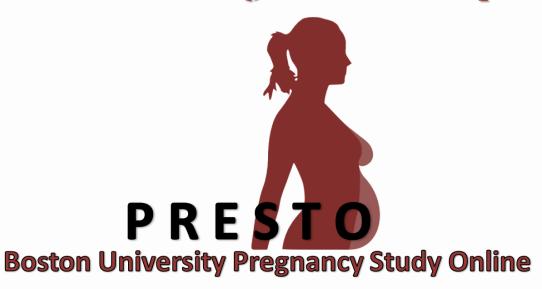
 registries used to capture unobserved events (miscarriages or births for those lost to follow-up)

Huybrechts K, et al. Eur J Epidemiol, 2010

Study costs

	2008 US\$
Study Cost Components	
General set-up	
→ Website construction	\$34,625
→ Development e-mail reminder system	\$4,756
→ Other*	\$31,961
Subject recruitment (advertisements, media strategy)	\$40,508
Website maintenance and follow-up	\$9,850
Record linkage	\$9,512
Research personnel	\$268,287
Total Cost	\$399,500
→ Fixed	\$178,281
→ Variable	\$221,219
Per subject cost	\$160


Estimated per subject cost for conventional study design: \$322



Snart Forældre Study

- Five-year R01 study funded by NICHD (PI: Hatch) to continue and expand Snart-Gravid Study (≥ 2011)
- General objectives:
 - Enroll additional women and their male partners over 3 years
 - Evaluate diet, exercise, medication use vs. TTP and miscarriage

Internet-Based Time-to-Pregnancy Study in North America (June 2013 to present)

Study website: presto.bu.edu

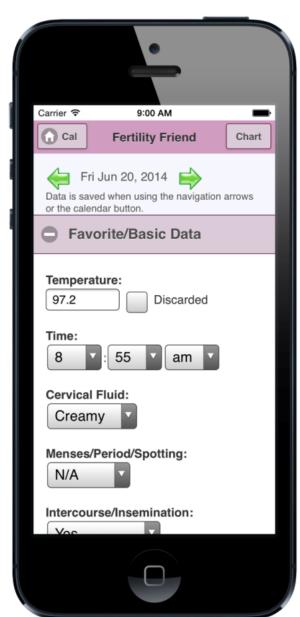
Study Design

- Internet-based preconception cohort studies of lifestyle, dietary, and medical risk factors for subfertility
- Eligibility requirements:

Snart Gravid/Snart Foraeldre (2007-present)	PRESTO (2013-present)	
Resident of Denmark	Resident of U.S. or Canada	
Age 18-45 years	Age 21-45 years	
Willing to provide CPR number*	Willing to allow birth registry linkage	
In stable relationship with male partner		
Attempting to conceive		
Not using fertility treatments		

^{*}Permits linkage to all registries in Denmark

PRESTO: Online Data Collection

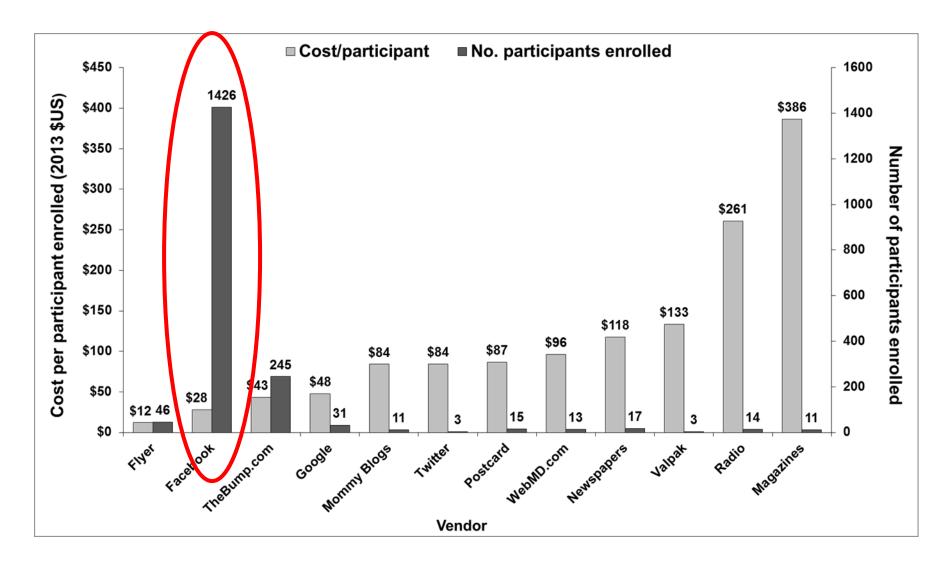

- Screener questionnaire
- Baseline questionnaire
 - Randomization (50%) to FertilityFriend.com
 - Optional: male baseline questionnaire

- Food Frequency Questionnaire: 10 days after baseline
- Follow-up: every 8 weeks for 12 months or until pregnancy
- If participant becomes pregnant:
 - Early pregnancy questionnaire (6-10 weeks' gestation)
 - Late pregnancy questionnaire (32 weeks' gestation)
 - Postpartum questionnaire (6 months after due date)
- Birth registry linkage (MA, CA, PA, TX, MI, and FL)

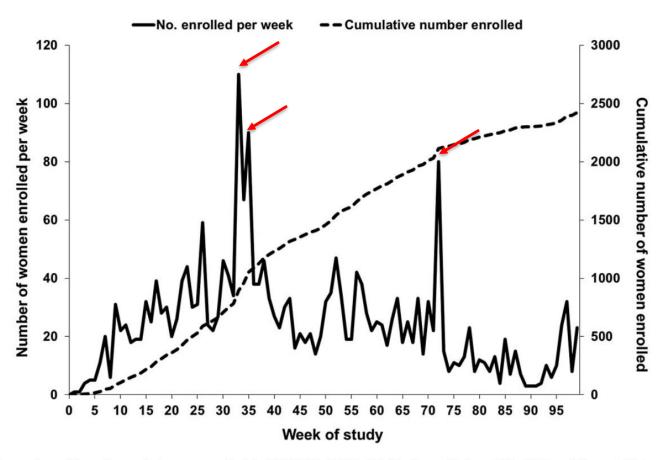
Smartphone app

Incentives

- ✓ For enrolling in PRESTO:
 - ✓ Randomization (50%/50%) to VIP membership at FertilityFriend.com
- ✓ For completing dietary questionnaire:
 - ✓ Nutrient summary of intake
 - ✓ Lottery to win \$100 gift card to grocery store (1/500 women)
- ✓ For completing male questionnaire:
 - ✓ Lottery to win iPad mini (1/250 couples)
- ✓ For completing all required follow-ups:
 - ✓ Lottery to win \$200 gift card (1/500 women)
- ✓ For enrolling in E-PRESTO:
 - ✓ \$50 gift card (x2)


Incentives

- ✓ For enrolling in PRESTO:
 - ✓ Randomization (50%/50%) to VIP membership at FertilityFriend.com
- ✓ For completing dietary questionnaire:
 - ✓ Nutrient summary of intake
 - ✓ Lottery to win \$100 gift card to grocery store (1/500 women)
- ✓ For completing male questionnaire:
 - ✓ Lottery to win iPad mini (1/250 couples)
- ✓ For completing all required follow-ups:
 - ✓ Lottery to win \$200 gift card (1/500 women)
- ✓ For enrolling in E-PRESTO:
 - ✓ \$50 gift card (x2)



Cost per participant enrolled and total number enrolled, by vendor

Paediatric and Perinatal Epidemiology, 2015, 29, 360-371

Total number of participants enrolled

Figure 2. Total number of female participants enrolled in PRESTO (2013–15). Peaks at 33 (n = 110), 35 (n = 90), and 72 (n = 80) weeks are result of PRESTO participant posting on Reddit.com.

Study costs: PRESTO vs. traditional cohort study

Table 4. Costs of recruiting and following 2,421 female PRESTO participants

Study cost components	
General set-up	
Website construction	\$20,183
Development of e-mail reminder system	\$3,441
Other ^a	\$20,321
Subject recruitment (advertisement, media strategy, incentives ^b)	\$67,898
Website maintenance and follow-up	\$16,831
FertilityFriend.com VIP memberships (in-kind donation: \$45 x 935)	\$42,075
Research personnel ^c	\$187,432
Total costs	\$353,181
Per subject cost (2013 US\$)	\$146

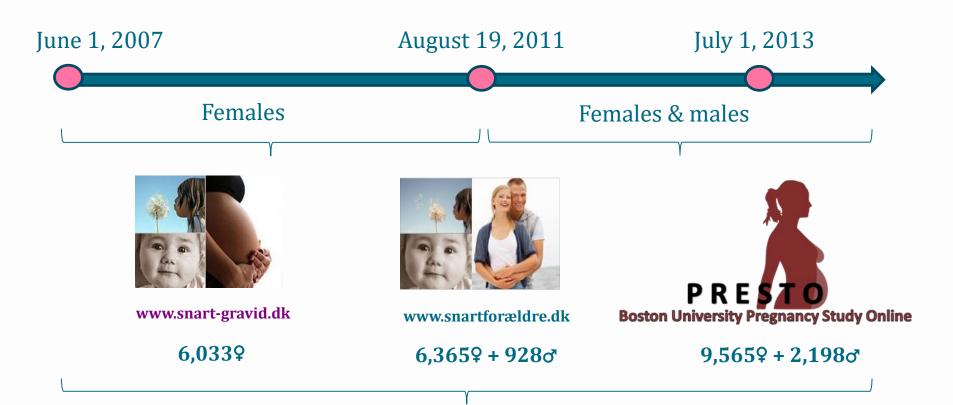
^a Includes costs associated with quality assurance, system documentation, and coordination between research and system development teams.

Estimated per subject cost for conventional study design: \$322

^b Includes lotteries but not FertilityFriend.com memberships. FertilityFriend.com memberships were donated inkind and no NIH funds were used to cover this expense.

^c Includes for unpaid internships completed by undergraduate and graduate students at Boston University.

Selected findings



Cohort enrollment

21,9639 + 3,126&

Substudies:

- ✓ Blood & urine collection: 129 women (SF) + 159 women (PRESTO)
- ✓ In-home semen testing: ≥290 samples (PRESTO)

Data Analysis

- ✓ Restriction: ≤6 cycles of attempt time at entry
- ✓ At-risk cycles contributed until report of pregnancy, fertility treatment, no longer trying, loss to follow-up, or end of follow-up (12 cycles), whichever came first
- ✓ Proportional probabilities regression: fecundability ratio (FR*) and 95% confidence interval (CI)
- Multiple imputation

*FR = cycle-specific probability of conception among exposed divided by that among unexposed. FR < 1 indicates **reduced** fecundability

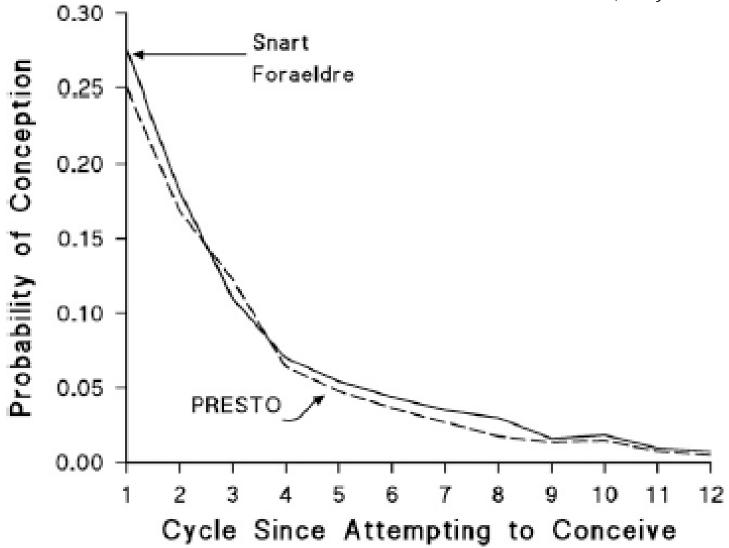
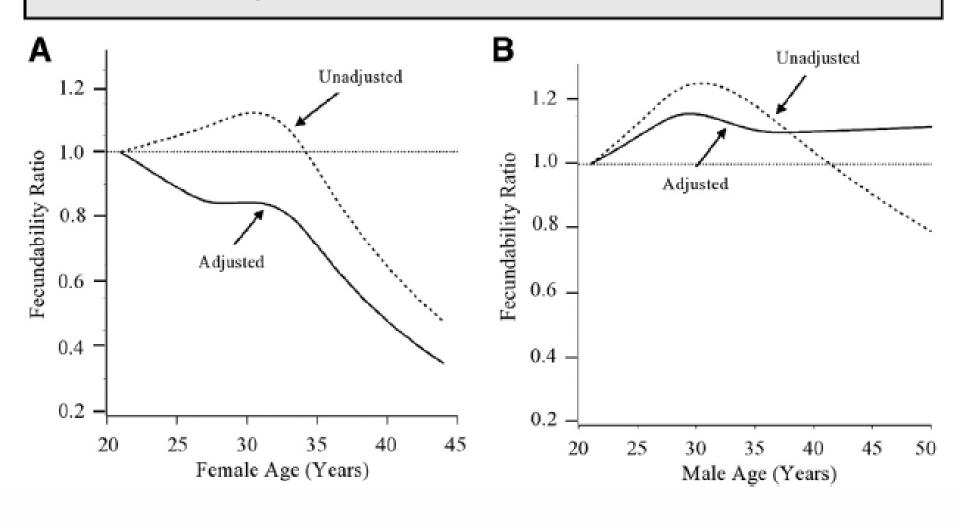



FIGURE 2 Conditional probability of conception per menstrual cycle of attempt time stratified by cohort. PRESTO, Pregnancy Study Online.

FIGURE

Association between female and male age and fecundability, fitted by restricted cubic splines, PRESTO, 2013-2017

Body mass index and TTP

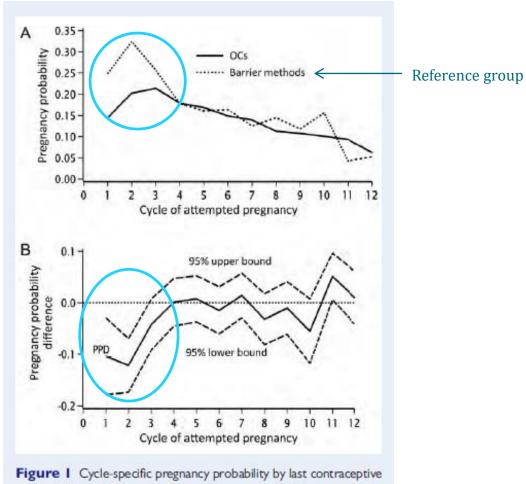
Table II Anthropometric measures at baseline and time to pregnancy

	No.	Cycles	Unadjusted model		Adjusted model ^a		Adjusted model ^b	
			FR	95% CI	FR	95% CI	FR	95% CI
BMI, kg/m²								
<20	161	843	0.95	0.78-1.15	0.94	0.77-1.15	1.02	0.83-1.2
20-24	666	3416	1.00	(ref.)	1.00	(ref.)	1.00	(ref.)
25-29	199	1178	0.83	0.70-0.99	0.83	0.70-1.00	0.72	0.58-0.90
30-34	85	569	0.73	0.57-0.94	0.75	0.58-0.97	0.60	0.42-0.85
≥35	38	334	0.55	0.39-0.78	0.61	0.42-0.88	0.48	0.31-0.74
Male partner's BMI, I	kg/m²							
<20	28	168	0.85	0.56-1.30	0.94	0.61-1.44	0.95	0.62-1.46
20-24	611	3200	1.00	(ref.)	1.00	(ref.)	1.00	(ref.)
25-29	432	2423	0.93	0.81-1.06	0.98	0.85-1.13	0.98	0.85-1.13
30-34	60	399	0.79	0.59-1.05	0.99	0.73-1.35	0.97	0.72-1.33
≥35	18	150	0.59	0.36-0.98	0.72	0.43-1.22	0.72	0.43-1.22

^aAdjusted for age, partner's age, cycle regularity, cycle length, partner's BMI (in female BMI analysis only), physical activity, smoking, alcohol intake and intercourse frequency.

^bAdjusted for factors in 'a' as well as waist circumference (in BMI analyses), female BMI (in all analyses except weight change) and BMI at age 17 (in weight gain analyses).

Vigorous physical activity and TTP, stratified by BMI


		Vigorous physical activity, hours per week						
Characteristic	None	<1	1	2	3–4	≥5		
Body mass index (kg <25	/m²)							
Pregnancies	337	365	311	392	267	93		
Cycles	1,700	2,148	1,798	2,355	1,627	688		
FR ≥25	1.00 (ref.)	0.79 (0.66–0.93)	0.79 (0.66–0.94)	0.76 (0.64–0.89)	0.72 (0.60–0.87)	0.58 (0.45–0.75)		
Pregnancies	163	201	129	128	75	23		
Cycles FR	1,156 1.00 (ref.)	1,344 1.12 (0.89–1.41)	809 1.15 (0.88–1.48)	801 1.16 (0.89–1.51)	668 0.76 (0.56–1.03)	131 1.22 (0.74–2.02)		
FIX	1.00 (rer.)	1.12 (0.69-1.41)	1.13 (0.00-1.40)	1.10 (0.09-1.51)	0.76 (0.56-1.03)	1.22 (0.74-2.02)		

Note: FR adjusted for cycle number, age, partner's age, body mass index, alcohol consumption, pack-years of smoking, intercourse frequency, last method of contraception, and moderate physical activity (when applicable); 95% CI in parentheses. FR = fecundability ratio; CI = confidence interval.

Pre-gravid oral contraceptive (OC) use and TTP

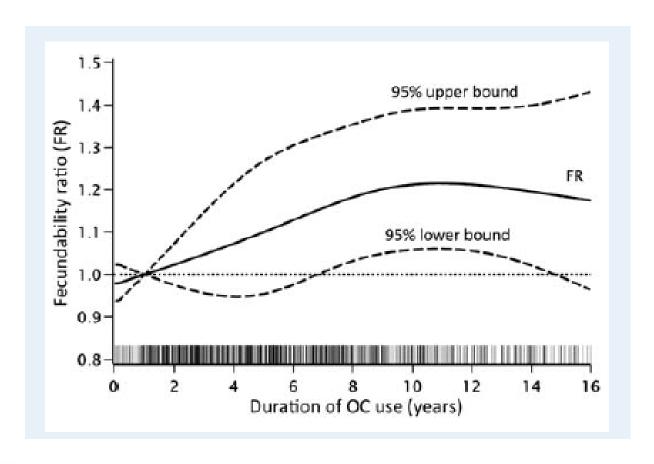
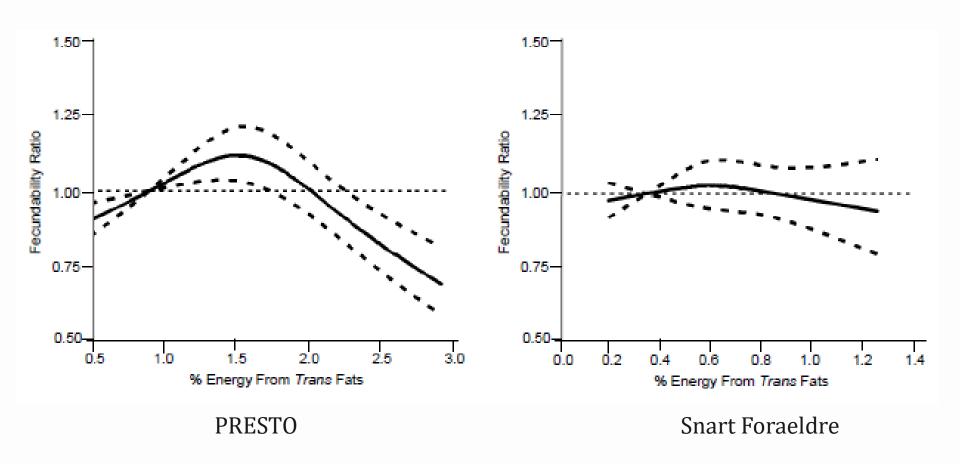
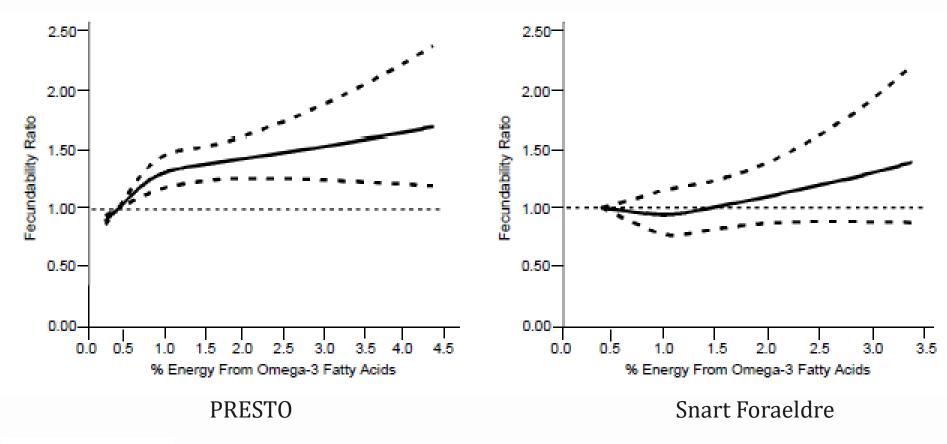


Figure 1 Cycle-specific pregnancy probability by last contraceptive method (**A**) and difference (**B**) in pregnancy probability among last contraceptive method, N = 3068.

Duration of OC use and fecundability

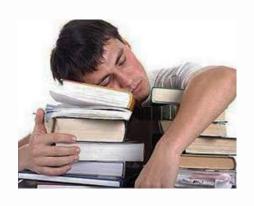

Dietary factors



Intake of trans fatty acids and fecundability

Intake of omega-3 fatty acids and fecundability

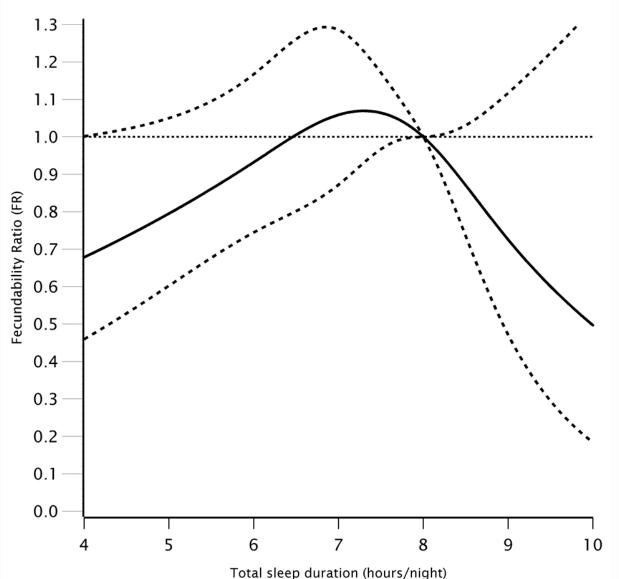




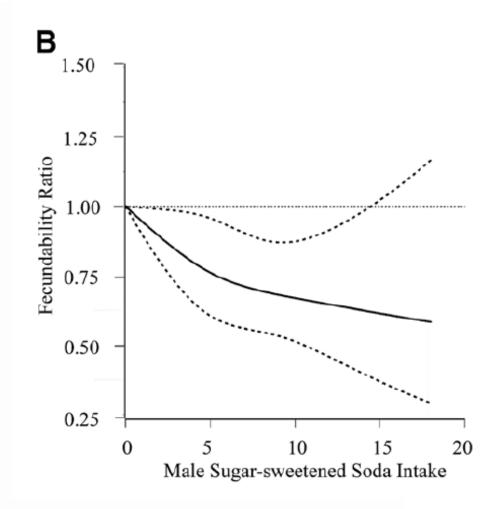
Shellfish intake and fecundability

Shellfish intake (servings/month)

Male factor analyses



Male sleep duration and fecundability


Adjusted for male and female age, male and female BMI, intercourse frequency, and the following factors among males: physician-diagnosed depression, race/ethnicity, education, use of multivitamins or folate supplements, smoking history, employment status, hours of work per week, previously fathered a child, hours of laptop use on one's lap per day, total MET-hours of physical activity per week, caffeine intake, alcohol intake, PSS-10 score, sugarsweetened soda consumption, and female partner's sleep duration.

Intake of Sugar-sweetened Beverages and Fecundability in a North American Preconception Cohort

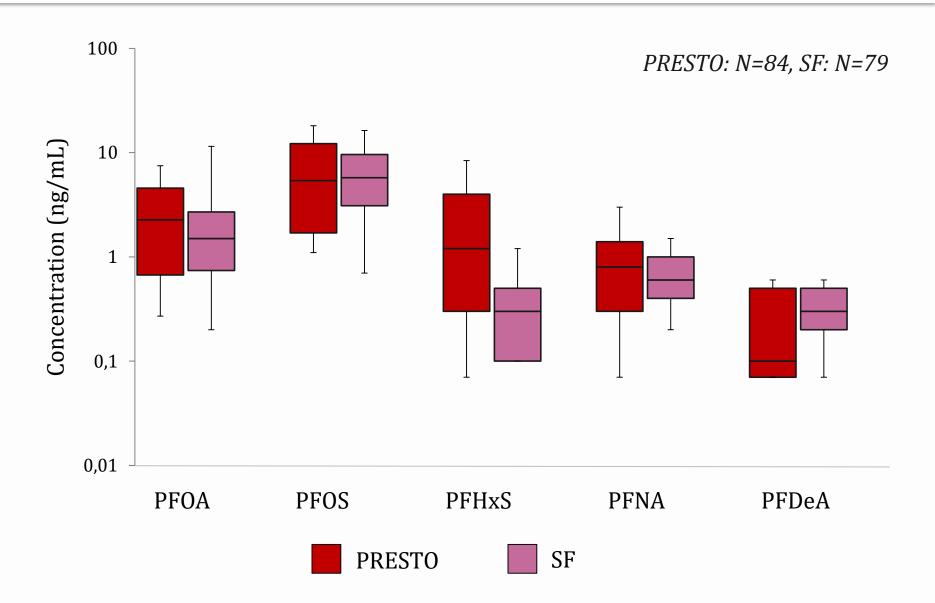
Elizabeth E. Hatch,^a Amelia K. Wesselink,^a Kristen A. Hahn,^a James J. Michiel,^a Ellen M. Mikkelsen,^b Henrik Toft Sorensen,^b Kenneth J. Rothman,^{a,c} and Lauren A. Wise^a

Pilot work

Background: PFAS

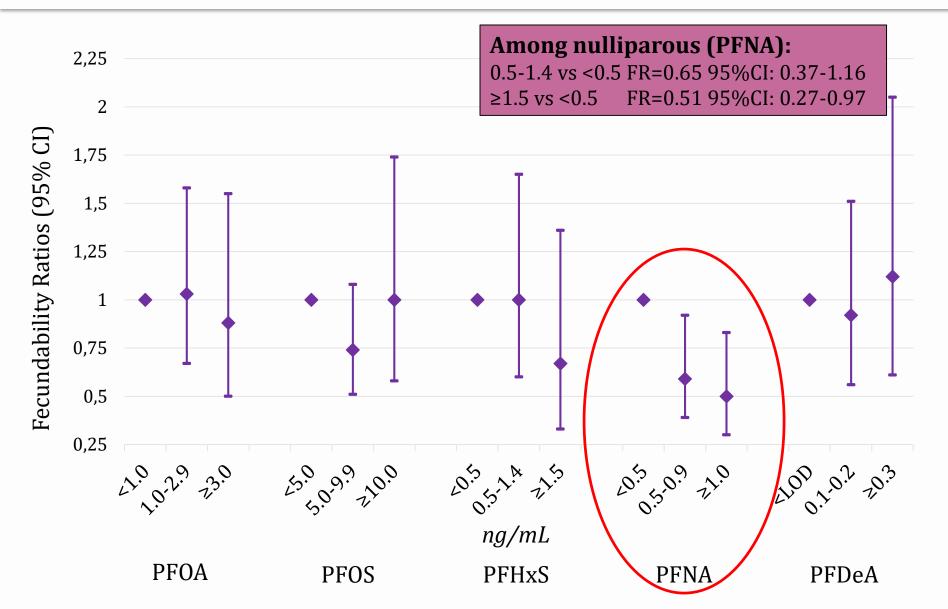
- Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals found in non-stick cookware, clothing, carpets, food packaging, foods (e.g. fish).
- Studies have reported TTP delays in association with:
 - perfluorooctanoate (PFOA)
 - perfluorooctane sulfonate (PFOS)
 - perfluorohexane sulfonate (PFHxS)
 - 2-N-methyl-perfluorooctane sulfonamide acetate (PFOSA)*
 - perfluorononanoate (PFNA)
- Results varied by study design (pregnancy cohort vs. preconception cohort) and parity (stronger among parous).

Background: PFAS


Retrospective studies	PFOA	PFOS	PFHxS	PFOSA	PFNA	PFDeA	Nullip
Fei, 2009 (DNBC)	↓ ↓	↓	NE	NE	NE	NE	↓
Whitworth, 2012 (MoBA)*	\	\	NE	NE	NE	NE	1
Bach, 2015 (DNBC)	1	null	NE	NE	NE	NE	null
Bach, 2015 (Aarhus Birth Cohort) [†]	null/↑	null/↑	null	null	null	null	null
Velez, 2015 (MIREC)	1	null	↓	NE	NE	NE	NE
Prospective studies							
Lum, 2017 (LIFE)	1	null	NE	1	1	null/↑	NE
Jørgensen, 2014 (INUENDO)	null	\	null	NE	\	NE	↑PFOA ↓PFNA
Crawford, 2017 (Time to Conceive)	null	null	null	null	null	NE	null
Vestergaard, 2012 (1st Prg Planners)†	null	nul	null	null	null	NE	null

↓ associated with delayed conception; ↑ associated with faster conception; null = little evidence of association; NE = not evaluated; *Did not measure TTP. †Restricted to nulliparous women only. Norwegian Mother and Child Cohort *Study* (MoBA); Danish National Birth Cohort (DNBC), Maternal-Infant Research on Environmental Chemicals (MIREC).

Serum Levels of PFAS



PFAS and Fecundability

Limitations and Strengths

	Limitations	Strengths				
•	Misclassification of exposure • Bias likely non-differential		Cost-effective methods Prospective data collection			
•	Outcome misclassification	• P	Preconception enrollment			
•	Residual/unmeasured confounding	• (Confounder data: both partners			
	• By lifestyle? SES?	• F	High cohort retention (>82%)			
•	Restricted to pregnancy planners	• A	Access to registry data			
•	Differential loss to follow-up?		Geographically diverse; full range of fertility spectrum			

Future Directions

- New funding to expand biospecimen collection
- Examine other EDCs and health outcomes (e.g., miscarriage, birth outcomes, child obesity)
- Use novel mixtures analyses
- Include male partners
- Use novel methods to collect biospecimens

Research Team

Boston University

Elizabeth E. Hatch (PI-SG/SF)

Kenneth J. Rothman

Kristen A. Hahn

Amelia K. Wesselink

Kathryn McInerney

Craig J. McKinnon

Sydney Willis

Nina Schrager

Yael Nillni

Shruthi Mahalingaiah

Michael McClean

Aarhus University Hospital

Ellen M. Mikkelsen

Henrik Toft Sørensen

Anders Riis

Web design/programming

Michael Bairos

Other consultants

Katherine Tucker (UMass Lowell)

Joe Stanford (U of Utah)

Michael Eisenberg (Stanford)

Funding sources: R01-HD060680, R01-HD086742 R21-HD050264, R21-HD072326

Evaluation of selection bias (Hatch et al., Epidemiology 2016)

	Snart Gravid	Danish Medical Birth
	N=4,801	Registry N=239,791
	Adjusted RR (95% CI)	Adjusted RR (95% CI)
Smoking vs. Low Birth Weight <2500g		
Non-smoker	1.00 (ref)	1.00 (ref)
Current smoker >10 cig/day	2.68 (1.21, 5.91)	2.87 (2.63, 3.12)
Parity vs. Preeclampsia		
Nulliparous	1.69 (1.25, 2.30)	2.27 (2.16, 2.38)

1.00 (ref)

0.66 (0.51, 0.86)

1.00 (ref)

1.33 (1.14, 1.56)

1.45 (1.21, 1.74)

0.88 (0.56, 1.37)

1.00 (ref)

1.84 (1.37, 2.46)

3.01 (2.25, 4.04)

0.90 (0.75, 1.09)

1.00 (ref)

1.19 (1.03, 1.37)

1.55 (1.34, 1.80)

1.00 (ref)

0.64 (0.62, 0.66)

1.00 (ref)

1.28 (1.25, 1.31)

1.49 (1.45, 1.53)

0.70 (0.65, 0.75)

1.00 (ref)

1.59 (1.51, 1.67)

2.70 (2.57, 2.83)

0.89 (0.86, 0.91)

1.00 (ref)

1.25 (1.23, 1.28)

1.59 (1.56, 1.63)

Primiparous

BMI<20

20-24

25-29

BMI<20

20-24

25-29

BMI<20

20-24

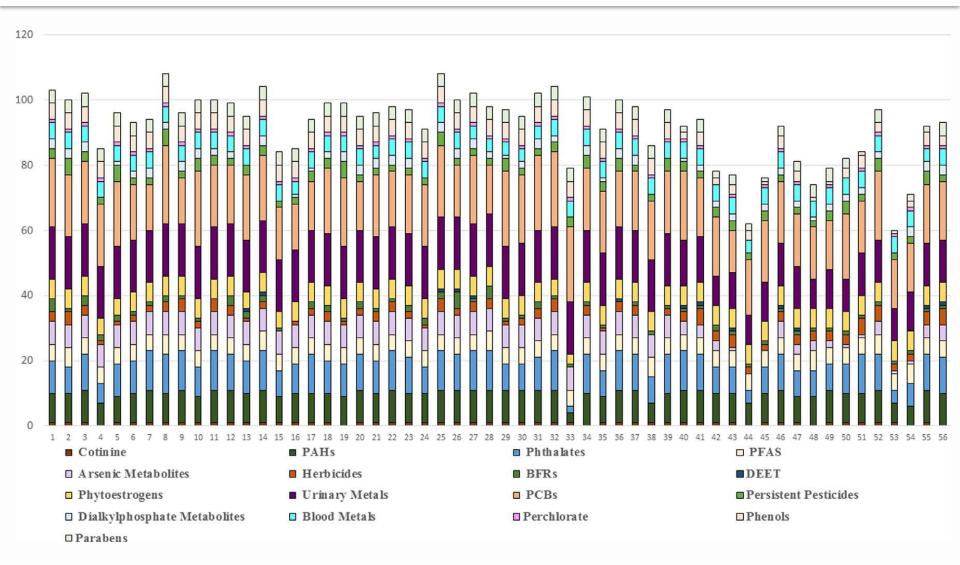
25-29

≥30

≥30

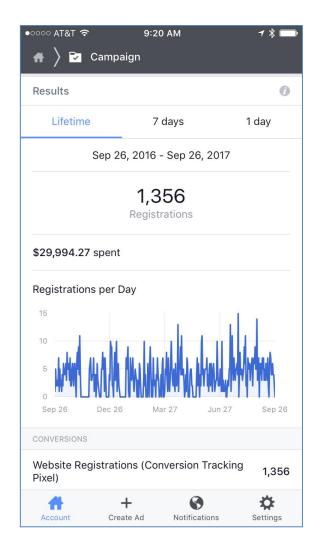
≥30

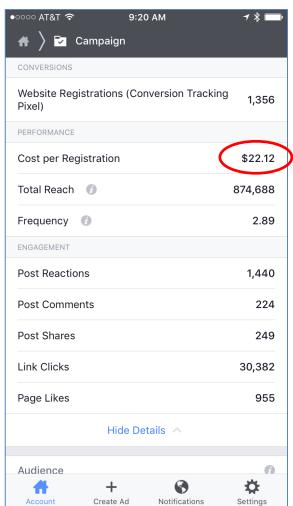
Maternal BMI vs. Macrosomia >4000g

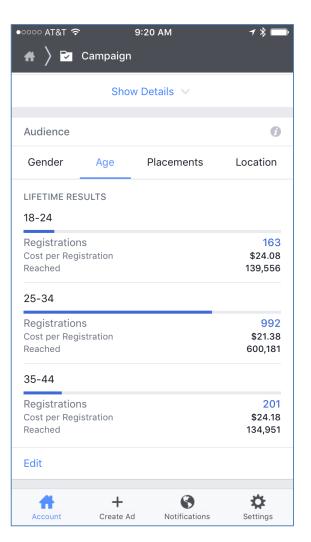

Maternal BMI vs. Preeclampsia

Maternal BMI vs. C-section

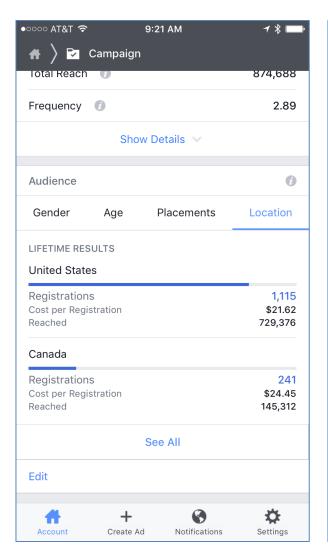
Total Number of Chemicals Detected in SF

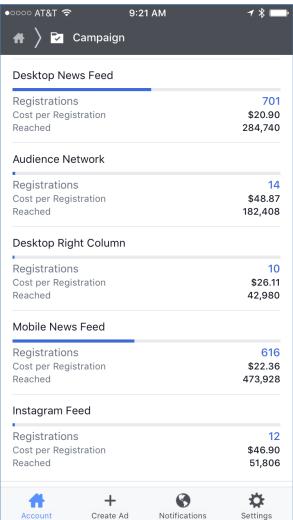


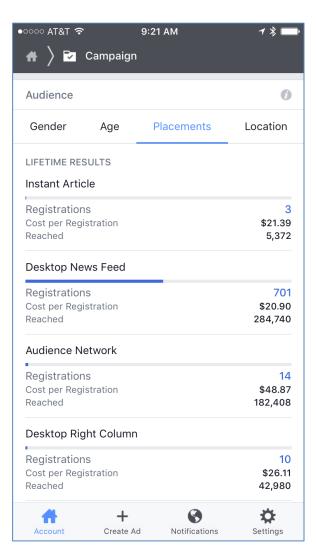



Why is Facebook so effective for recruitment?

- Can target potential participants based on:
 - Gender
 - Age
 - Language spoken
 - Geographic region (e.g., state/province, zip code)
 - Relationship status
 - Newly engaged
 - Newlywed (e.g., 3, 6, 12 months)
 - Parenting status and age of children
 - Education
 - Specific interests (e.g., church membership)
- Facebook page lends legitimacy to study


Facebook statistics





Facebook statistics

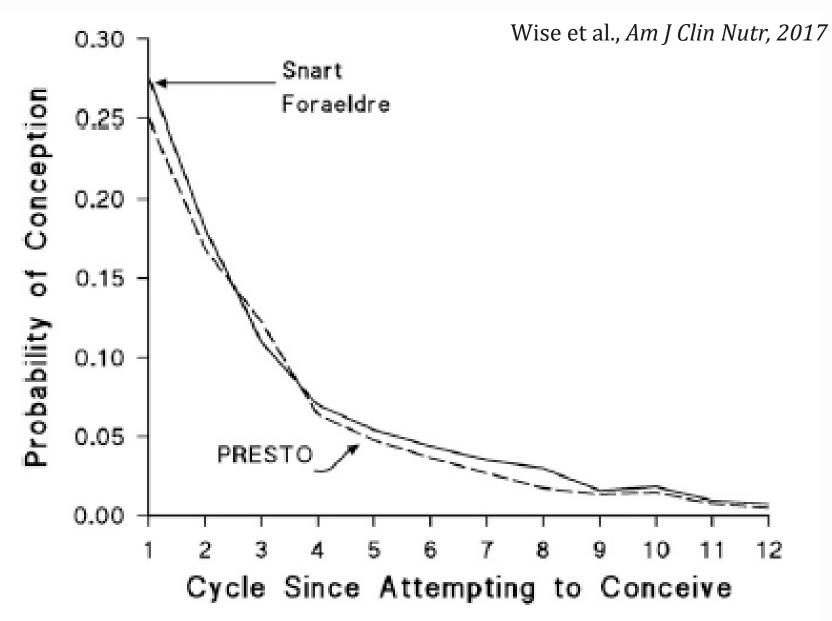


FIGURE 2 Conditional probability of conception per menstrual cycle of attempt time stratified by cohort. PRESTO, Pregnancy Study Online.

The Effect of Vaccination Against Human Papillomavirus on Fecundability

Kathryn A. McInerney, ^a D Elizabeth E. Hatch, ^a Amelia K. Wesselink, ^a Ellen M. Mikkelsen, ^b Kenneth J. Rothman, ^{a,c} Rebecca B. Perkins, ^d Lauren A. Wise ^a

Table 2. HPV vaccination and fecundability among pregnancy planners

Exposure	Number of cycles	Number of pregnancies	Crude Fecundability	Unadjusted FR (95% CI)	Adjusted FR (95% CI) ^a
Females					
Unvaccinated	10 332	1402	0.14	1.00 (Reference)	1.00 (Reference)
Vaccinated	4936	751	0.15	1.08 (1.00, 1.17)	0.98 (0.90, 1.08)
Vaccinated < Age 18	1094	154	0.14	1.03 (0.88, 1.20)	1.00 (0.85, 1.17)
Vaccinated ≥Age 18	3842	597	0.16	1.09 (1.00, 1.19)	0.98 (0.89, 1.08)
Males					
Unvaccinated	4177	634	0.15	1.00 (Reference)	1.00 (Reference)
Vaccinated	211	36	0.17	1.03 (0.76, 1.39)	1.07 (0.79, 1.46)
Vaccinated < Age 18	48	8	0.17	0.95 (0.50, 1.80)	1.10 (0.56, 2.19)
Vaccinated ≥Age 18	163	28	0.17	1.06 (0.75, 1.48)	1.06 (0.75, 1.50)

FR, fecundability ratio.

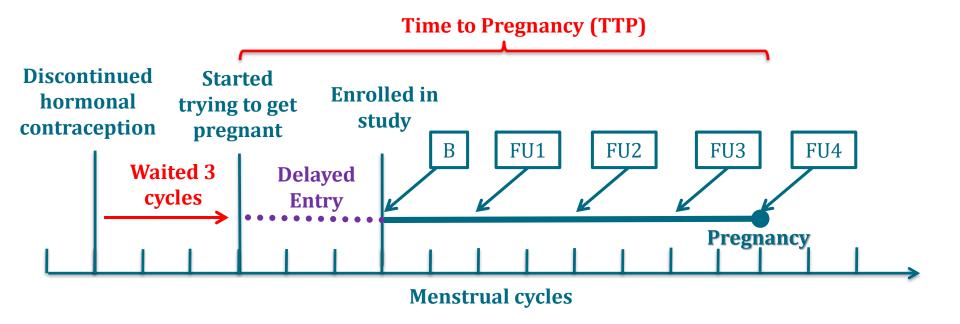
^aMale and female models are adjusted for age at baseline, education, income, geographic region of residence, race/ethnicity, history of smoking. Models for females are additionally adjusted for abnormal Pap test before age at vaccination and parent's education.

Table 3. HPV vaccination and fecundability stratified by number of sexual partners and history of STI/PID

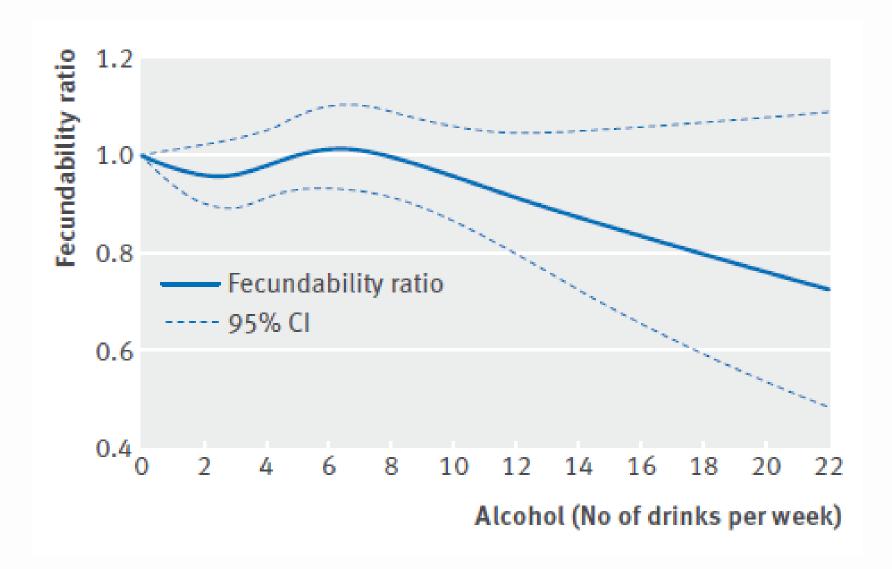
Exposure	No. of Cycles	No. of Pregs	Crude Fecundability	Unadjusted FR (95% CI)	Adjusted FR (95% CI) ^a		
		≥10 Sexual Partners					
Females							
Unvaccinated	2958	388	0.13	1.00 (Reference)	1.00 (Reference)		
Vaccinated	1304	210	0.16	1.08 (0.90, 1.30)	0.99 (0.79, 1.24)		
		History of STI/PID					
Females							
Unvaccinated	1436	161	0.11	1.00 (Reference)	1.00 (Reference)		
Vaccinated	601	87	0.14	1.27 (1.00, 1.61)	1.35 (0.99, 1.86)		
	History of STI/PID and No Abnormal Pap Test before Vaccination						
Females							
Unvaccinated	1436	161	0.11	1.00 (Reference)	1.00 (Reference)		
Vaccinated	361	56	0.16	1.41 (1.07, 1.85)	1.38 (1.00, 1.90)		

FR, fecundability ratio.

^aModels are adjusted for age at baseline, education, income, geographic region of residence, race/ethnicity, history of smoking. Models for females are additionally adjusted for abnormal Pap test and parent's education.

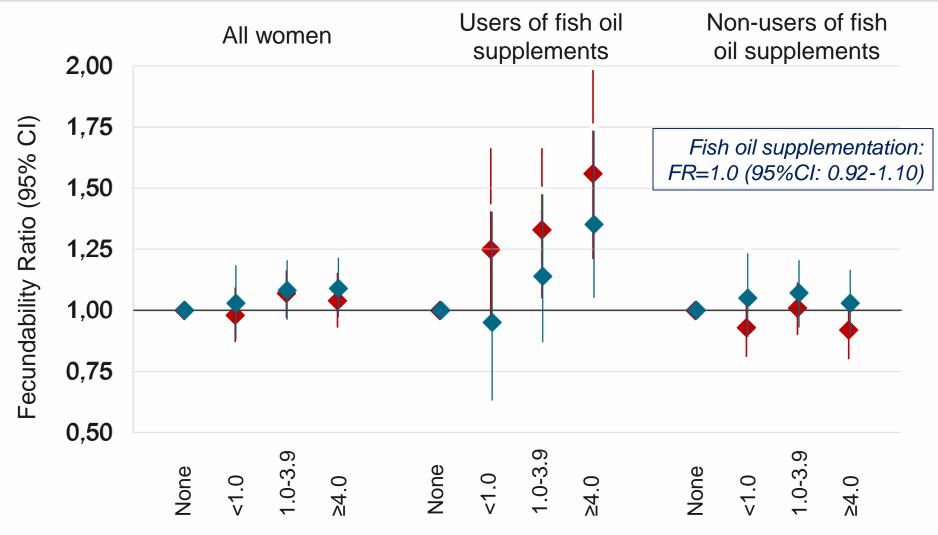


Calculating Time At Risk



"For how many cycles have you been trying to become pregnant?"

Example: total TTP = 3 cycles (attempt time at study entry) + 8 cycles (observed "at risk" attempt time) = 11 cycles


Female alcohol intake and fecundability

Total fish intake and fecundability

Total fish intake (servings/month)